CLOSE: Curriculum Learning on the Sharing Extent Towards Better One-Shot NAS
نویسندگان
چکیده
One-shot Neural Architecture Search (NAS) has been widely used to discover architectures due its efficiency. However, previous studies reveal that one-shot performance estimations of might not be well correlated with their performances in stand-alone training because the excessive sharing operation parameters (i.e., large extent) between architectures. Thus, recent methods construct even more over-parameterized supernets reduce extent. But these improved introduce a number extra and thus cause an undesirable trade-off costs ranking quality. To alleviate above issues, we propose apply Curriculum Learning On Sharing Extent (CLOSE) train supernet both efficiently effectively. Specifically, extent (an easier curriculum) at beginning gradually decrease (a harder curriculum). support this strategy, design novel (CLOSENet) decouples from operations realize flexible scheme adjustable Extensive experiments demonstrate CLOSE can obtain better quality across different computational budget constraints than other supernets, is able superior when combined various search strategies. Code available https://github.com/walkerning/aw_nas .
منابع مشابه
investigating the effect of motivation and attitude towards learning english, learning style preferences and gender on iranian efl learners proficiency
تحقیق حاضر به منظور بررسی تاثیر انگیزه و نگرش نسبت به یادگیری زبان انگلیسی، ترجیحات سبک یادگیری و جنسیت بر بسندگی فراگیران ایرانی زبان انگلیسی انجام شد. برای این منظور، 154 فراگیر ایرانی زبان انگلیسی در این تحقیق شرکت کردند. سه ابزار جمع آوری داده ها شامل آزمون تعیین سطح بسندگی زبان انگلیسی آکسفورد، پرسشنامه ترجیحات سبک یادگیری براچ و پرسشنامه انگیزه و نگرش نسبت به یادگیری زبان انگلیسی به م...
One-Shot Imitation Learning
Imitation learning has been commonly applied to solve different tasks in isolation. This usually requires either careful feature engineering, or a significant number of samples. This is far from what we desire: ideally, robots should be able to learn from very few demonstrations of any given task, and instantly generalize to new situations of the same task, without requiring task-specific engin...
متن کاملActive One-shot Learning
Recent advances in one-shot learning have produced models that can learn from a handful of labeled examples, for passive classification and regression tasks. This paper combines reinforcement learning with one-shot learning, allowing the model to decide, during classification, which examples are worth labeling. We introduce a classification task in which a stream of images are presented and, on...
متن کاملOne-shot and few-shot learning of word embeddings
Standard deep learning systems require thousands or millions of examples to learn a concept, and cannot integrate new concepts easily. By contrast, humans have an incredible ability to do one-shot or few-shot learning. For instance, from just hearing a word used in a sentence, humans can infer a great deal about it, by leveraging what the syntax and semantics of the surrounding words tells us. ...
متن کاملLearning feed-forward one-shot learners
One-shot learning is usually tackled by using generative models or discriminative embeddings. Discriminative methods based on deep learning, which are very effective in other learning scenarios, are ill-suited for one-shot learning as they need large amounts of training data. In this paper, we propose a method to learn the parameters of a deep model in one shot. We construct the learner as a se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2022
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-031-20044-1_33